\(\int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\) [816]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 85 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {2 b^2 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}}+\frac {2 A b^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {b \cos (c+d x)}} \]

[Out]

2*A*b^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)
/d/(b*cos(d*x+c))^(1/2)+2*b^2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2
^(1/2))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {16, 2827, 2721, 2720, 2719} \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {2 A b^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {b \cos (c+d x)}}+\frac {2 b^2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}} \]

[In]

Int[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(2*b^2*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]) + (2*A*b^3*Sqrt[Cos[c + d*x]]*
EllipticF[(c + d*x)/2, 2])/(d*Sqrt[b*Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rubi steps \begin{align*} \text {integral}& = b^3 \int \frac {A+B \cos (c+d x)}{\sqrt {b \cos (c+d x)}} \, dx \\ & = \left (A b^3\right ) \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx+\left (b^2 B\right ) \int \sqrt {b \cos (c+d x)} \, dx \\ & = \frac {\left (A b^3 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{\sqrt {b \cos (c+d x)}}+\frac {\left (b^2 B \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)}} \\ & = \frac {2 b^2 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}}+\frac {2 A b^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {b \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.64 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {2 (b \cos (c+d x))^{5/2} \left (B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+A \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )\right )}{d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[(b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(2*(b*Cos[c + d*x])^(5/2)*(B*EllipticE[(c + d*x)/2, 2] + A*EllipticF[(c + d*x)/2, 2]))/(d*Cos[c + d*x]^(5/2))

Maple [A] (verified)

Time = 53.23 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.92

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(163\)
parts \(-\frac {2 A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}+\frac {2 B \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(290\)
risch \(-\frac {i B \,b^{2} \sqrt {2}\, \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) b \,{\mathrm e}^{-i \left (d x +c \right )}}}{d}-\frac {i \left (\frac {i A \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )}{\sqrt {b \,{\mathrm e}^{3 i \left (d x +c \right )}+b \,{\mathrm e}^{i \left (d x +c \right )}}}+B \left (-\frac {2 \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+b \right )}{b \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+b \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i E\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {b \,{\mathrm e}^{3 i \left (d x +c \right )}+b \,{\mathrm e}^{i \left (d x +c \right )}}}\right )\right ) b^{2} \sqrt {2}\, \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) b \,{\mathrm e}^{-i \left (d x +c \right )}}\, \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) b \,{\mathrm e}^{i \left (d x +c \right )}}}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}\) \(414\)

[In]

int((cos(d*x+c)*b)^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin
(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.40 \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\frac {-i \, \sqrt {2} A b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} A b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B b^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - i \, \sqrt {2} B b^{\frac {5}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{d} \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

(-I*sqrt(2)*A*b^(5/2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*A*b^(5/2)*weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + I*sqrt(2)*B*b^(5/2)*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - I*sqrt(2)*B*b^(5/2)*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)

[Out]

Timed out

Maxima [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right )^{3} \,d x } \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c)^3, x)

Giac [F]

\[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right )^{3} \,d x } \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c)^3, x)

Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx=\int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^3} \,d x \]

[In]

int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^3,x)

[Out]

int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^3, x)